Time Parallel Solution of Linear
Partial Differential Equations

on the Intel Touchstone Delta Supercomputer

Nikzad Toomarian
Amir Fijany
Jacob Barhen

Center for Space Microeleet yonics Technology
Jet Propulsion laboratory
California Institute of Technology
4800 Oak Grove Dr., MS 303-310
Pasadena, CA 91109

Contact Author:

Dr. Jacob Barlien

"c]: 818-354-9218

Fax: 818-3'33-5013
It-mail: barhen@ni ps.jpl.nasa . gov

Accepted for publication in

Concurrency: Practice and Experience

February 1994

Time Parallel Solution of Linear
>artial Differential Equations
on theIntel Touchstone Delta Supercomputer

Nikzad Toomarian, Amir Fijany anti Jacob Barhen

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109

Abstract

This paper presents the iimplementation of a new class of massively parallel algorithms for
solving certain time-dependent partial differential equations (P DEs) onmassively parallel
supercornputers. Such PDFEs are usually simulated numerically, by discretization in time
and space, and by applying a time stepping procedure to data and algorithms potentially
parallclized in the spatial domnain. In a radical departure from such a strictly sequential
remyproral paradigim, we have developed a coneept of time-parallel algorithms, which allows
the marching in time to be fully parallelized. This is achieved by using a set of transfor-
‘nations based on cigenvalue- eigenvector decompositions of the matrices involved in the
discrete formalisin. Qur time-parallel algorithins posses a highly decoupled structure, and
can therefore be efficiently implemented on emerging, massively parallel, high-performance
supcercomputers, with a minimum of communications and synchronization overhead. We
have successfully carried out a proof-of-concept demonstration of the basic ideas using a
two-dimensional heat cquation example implemented on the Intel Touchstone Delta Super-
computer. Our results indicate that lincar, and even superlinear speedup can be achieved
and maintained for a very large number of processor nodes.

1. introduction

Alarge variety of physical phenomena can be deseribed by means of Partial Diflerential
Equations (PDFEs) [I]. For most practical applications, an analytical solution dots not ex-
ist. Hence, nuinerical solutions of such equations are usually considered. From such a
perspective, the development of fast and accurate algorithms has been extensively studied
i the literature. Recent advances in massively parallel hardware architectures are high-
lighting the need for additional advances in this area. Specifically, in order to fully exploit
the computing power of these new architectures, existing algorithins must be reexamnined
based on their efficiency for parallel implementation and, cventually, new algorithins must
be developed that, from the onset, take a greater advantage of the massive parallelism.

2

The Intel Delta, Intel Paragon, and CRAY ‘1'31) arc representatives of an emerging class

of massively parallel MIMD architectures. The main feature of this class of parallel archi-
tectures is that they providea large number of very powerful node processors with vector
processing capability, but possess a rather simple communication structure (e.g., a toroidal

mesh structure for the Delta). More importantly, these architectures allow exploitation of
concurrency at two computational levels. That is, in addition to the MIMD parallel com-
puting feature, the vector processing capability of each processor node can be exploited

to further increase the overall speedup in the computation. Thus, the design of parallel
algorithins for such architectures must result in processes that are coarse grain, can be
efficiently vectorized, and require a minimumn of communications.

I this paper, we present the implementation of a new class of algorithms for solving a
lincar parabolic cquation (in a bounded domain 2, with boundary 99) on a massively
parallel supercomp uter. Without 10ss of generality, we limit ourselves to a homogencous,
two-dimensional case with Divichlet boundary conditions. Theoretical extensions to higher
dimensions, nonhomogencous, space dependent coeflicients, and different boundary condi -
tions are discussed elsewliere(2].

For the two-dimensional case under consideration, we take the domain to be a square of.
length L ie,, 0 <a < L and O <y < L.Hence, the parabolic PDE of interest is given as

Ov O%v 0%

O |
ol Ox? Oy?) ()
The pertaining boundary and mitial conditions are specified as follows:

v(t,x,y) = Vit z,y) a,y € 0N 0 <t <ty (2a)

U(O,.?Y,y) = f(m,y) z,y € § (Qb)

where a is constant and ¢y denotes the final time. Superimposing a uniform grid on the
domain, e, z = 7 x A, 1 <7< Nandy = 1 X Ay, 1<:1< AT, and assuming
Ap=Ay = h=L/(N+41), willresultin discrete valucs, v:")-, which approximate the
continuous values v(k Ay, 7/, 1h). Inthe sequel, the grid points values of v will be referred
to cither in term s Of the N x N matrix vy, .. in terms of the N? vector ve, where

(=(—-1)xN+4 j,and 1 <2, 3 <N,

The discretization of Kq.(1) in both time and space using the above uniform grid yields a
family of numerical schemes, formalized as:

4 286MpEF 1 201 - g)sM)M - 2s[pvIEt N g @ - VM) o<k <K (3)

In EC].(3), I denotes the N2 x N2identity matrix, é == Ay/2h?, where A is the magnitude of
the time step, and K =17/A,. The N2 x NZmatrix M arises from the discretization of the
sccond order spatial derivatives. By using a five point central differencing scheme, M will
e block tridiagonal, given as M = Tridiag[l, A, I}, where A = Tridiag[l, - 4, 1] ¢ RN ‘N.
The N?2 vector V incorporates the time dependent boundary conditions, and has the
explicit form:
V= [v ,0-v0,1,00,2,V, N-1,V0, N-tV1 N4,
Vi, G- -+, 0vi N, 2<i<N-1 (9

.
UN,O+UNA1,1,UN$1,2) “““5 UNJ1,N=~1,UN+1,N + UN, N+1]

Finally, the constant 3 determines the implicit degree of the method. Threw distinct
regimes can be considered mm terms of 3:

1- Explieit method, 8 = 0; then Eq. (3) becomes:
o (128 M 25V o<k < K (5)

2- Implicit method, ,13 = 1; and Eq. (3) becor nes:
(I426M)H0) = K | osplkt1) 0< k<K (6)-

3- Crank-Nicholson (C-N) method, #= 1 /2; in this casc Eq. (3) caube written as:
(7 4 6MY™ Y o (1 - ANl - g yIkY 0<k<K -

We will focus our discussion on the C-N method, with the understanding that the par-
allel algorithims presented in the sequel arc, in principle, applicable to all three methods.
Squations (9-7) represent the marching in time procedure for solving Eel. (1). From a
computational point of view the problem is hoth time and space dependent. Throughout
this paper, the: term space parallel is used for algorithms that only exploit parallelisin in
solving Eqgs. (5-7) at each time step, while the termtime parallel refers to algorithins that
exploit parallelism in the concurrent computation of all vectors vl*l,

The formalism of Eqs. (5-7) appears to imply a strict sequentiality of the computation in
time. I recent years, a number of paradigins have been proposed in an attempt to achieve
some level of time parallelism. To date, only limited success has been reported[3-8]. In
a new development, howeve I', we have presented[9] a concept of time parallel algorithins,
which allows the marching in tiine procedure to be fully parallelized. This is achicved by
diagonalizing Eqgs. (5-7) through a transformation bad upon the eigenvalue-cigenvector
decomposition (EED) of the matrices induced by the discretization. Thus, Egs. (5-7) can
Le reduced to a set of First Order Lincar Recurrences (FOLRs), which allows the solution
for al] time steps to be computed concurrently. The resulting time parallel algorithins have
a highly decoupled strut.tum and can, therefore, can be efficiently implemented on emerging
massively parallel MIMD architectures with minimum communication and synchronization
overheads.

‘This paper is organized as follows. The concept of time parallel algorithms, as applied
to the solution of Eq. (1), is described in Section 2. The best kunown serial algorithm
is addressed in Section 3. The specific heat equation, which is used as an illustrative
framework for benchmarking the proposcd formalismn, is presented in Section 4. The

results of our numerical simulations on the Intel Touchstone Delta supercomputer are
given in Scetion 5, Finally, some concluding rema rk s are made in Section 6.

2. Time Parallel Algorithm Description

The time parallel algorithm we propose requires the derivation of the EED of the matrix
M. The following theorem (for proof scc e.g., [10], p349) is used inthe sequel:

Theorem 1. The EED of an N X N symanetric, tridiagonal Toeplitz matrix ¢ = Tridiag
[0, a, b] is given by
= OA6. (8)

The rows of the matrix 6 correspond to the norinalized cigenvectors of the matrix ¢, with
clements given by:

7]

M

9
9 11 .,:,;;,, -8
TN

The N X N diagonal matrix A involves the set, of eigenvalues of the matrix 4, with the
valucs of the 2" diagonal clement given by:

) 2a]:laaN (9)

in(

A= a2 (tos(wl‘?{“]) 1o

Here we cannote that 6 is the one-dimensional Discrete Sine Transform (DST) operator.
Heuce, it is a syminctric, orthonormal matrix, i.c., 6= 7 = 61,

Now, let us define a N°x N?block diagonal matrix © = Diagl8, f),... , 0]. Furthermore, wc
consider the N* x N* permutation matrix I”, which arises in 2-dimecensional Discrete Fourier
Transfor111s . The effect of applying P’ to the N? vector with elements v, is equivalent to
transposing the N x N matrix with clements vi; . Since both matrices © and P’ arc

symmetric and orthogonal, we have © = 07 =0 " laud P = P7 == P~ |
Theorem 2. Themalriz M has an KEED of th ¢ form:
M = OPOAOTO (11)

where, Aisa N? x N? diagonal matriz. The value Of eachel ement,i. c., Ae,is computed
a ccording to:

I]
Ap = 44 2(-,08(;\, 4) - QCOS(N],(T]) (12)

4]

Proof. From Theorain 1 and the definition of 8, we can sce that the matrix M can be
expressed as

M: 050 (13)

inwhicli 17 is a N2 x N? block tridiagonal matrix, given as 7= Tridiag[l, Aa,I]. Here Aa
is itself a diagonal matrix of the eigenvalues of matrix A (see definition of M). Since the
block elements of 17 are diagonal, it can be reduced to a block diagonal matrix as:

n=0"rrnyPr = rP(prypr)r=rvp (14a)
in which ¥ is a N? x N2 block-diagonal matrix, ¥ = Diag{¥;}. Each N x N block, ¥,,

has a symmetric tridiagonal Tocplitz structure given by ¥, = Tridiag[l, A 4,i,1]. From
Theorem 1, the EED of ¥, is

where the 7 element of matrix \; is given by

N ‘) 7 . . e 7]
(Nilj = Aaat 2005(~N 3 y= -4+ _),cos(w 1) 4 ?COS(Y\!:

If we define A = Diag[:\i], from the definition of © it follows that
¥ OAO (14b)

By substituting Eqgs. (14) into Eq. (13) the desired EED of the matrix M, Eq. @ 1), is
obtained.

The definitions of © and P imply that the matrix
- 00 (15)

is also symmetric and orthonormal,i.c., @ » @7 = &', Notc that @ is the operator of
the 2-dim ensional sine transform.

our time parallel algorithin is derived by substituting Egs. (14) and (15) into the C-N
scheme of Eq. (7). After some re-arrangeimert, one obtains:

O(1 + M) = (1 - sA)YPolM - SV L VY o<k < K (16)

We now define
v o (17a)
VoV (170)
and, multiplying both sides of kq.(16) by the nonsingular matrix @, we obtain the di -
agolized form of Eq. (7):
(14 M) o (1 - gAY - s Py o<k < K (18)

6

Furthermore, we introduce the N?x N? diagonal matrix 1), with elements

1-4
Pes %iT‘azAf’; 1 <0< N? (19a)
T ¢
and define (k1] - (K]
. S(VIF vt
gl - SV AV o e (19)

(14 6A¢)
Recalling the orthonormality of @, i.c., ®=:d~1 and substituting Eqs. (17) and (19) into
Eq.(1S), we obtain the recurrence:

s = pplkl — @ o<k < K (20)

which represents a first order inhomogencous linear systemn. Note that with O(K) pro-
cessors, all vectors d* can be computed in a fully decoupled fashion ina tine of O(l).
The linear recurrence in Eq. (20) can then be solved in O(loge IS) by using either a cyclic
reduction algorithin[1 1] or a recursive doubling technique[12].

For time independent boundary conditions, one can rewrite Eq. (20) as follows

ol = phglol —(dk o pdlk oy DR 1<k <K (21a)
and, since dl¥ = d (1 <k < IV), one obtains the simpler expression:
okl = prao) ! R (21b)
' 1--D

Furthermore, if onc assumes homogenous b oundary conditions (i.e., d = 0), the above
cquation will further reduce to:

o o pkglol (22)

It should be emphasized that cach processor k can compute its own corresponding power
of Din a time of O(logzk) without communication (using, c.g., algorithms in [1 3]).

As a simple illustration, we now suminarize the time parallel algorithm for constant b ound-
ary conditions. On cacli processing node:

0 Transform the initial conditions vector, 1.c., compute
ol @ lo)

This step can be accomplished inO(N2log, N) multiply-accumulates, using fast trans-
forms.

0 Calculate ca ch vector vlk] using Eq. (22), with a complexity of O(N?) per time step,
k;

-t

0 Apply aninverse transform to the! vector zJlkl to obtain 4]
oMl = @l 1<k <K

This step can be accomplished in O(N?log; N) multiply-accumulates for each time
step ke, by using fast transforins.

The overall com putational complexity of the time-parallel algorithim on a single processor
o - T2 . '
machine is therefore O(W N?logz N). Because of the inherently decoupled structure of
- - - ¢ 2¢ - - -
our algorithm, this complexity scales as 0(’-‘ﬂ-"&gﬂ-’ﬂ) on asystem involving N, processor

nodes.

3. Best Serial Algorithm

In order to determine the “best” serial algorithin for the problem under consideration, we
make the following observations. The cocflicient matrices in Egs. (5-7) have a symmetric,
positive-definite, and sparse structure. This allows the use of rather generic iterative
mecthods suchas SO If, conjugat e gradient, ete. [1 4], for solving the linear systems. More’
importantly, however, we also note that these matrices have similar structures to those
arising i the solution of the Poisson equation. I that sense, BEgs. (5-7) represent a
sequerice of Poi sson equations. Thercfore, the so called Fast Poisson Solvers [15] call be
dircetly applied to the linear systems, Fqs. (5-'), witha greater computational efficiency
than the iterative methods [1 G]. Inthe sequel, we suggest an improved version of the
matrix decomposition algorithm of [15].

The computational complexity of such “best serial algorithms” must be evaluated in a
framework consistent with the time parallel formalisimn. We note that such algorithins arc
also based on the decomposition of mat rix M. However, this decomposition is now limited
to that specified in Theorem 2. Substituting Eq. (1 1) into the C-N scheme, Eq. (7), and
rearranging the terms we obtain:

Or(+ spovktl - opu - syyresdt o<k <K (23)

l.et us define
v= POv (24)

Using the orthonormality of @ and I, and substituting Eel. (24) into Eq. (23), yields

(14 8Wwl e (7. 50l o<k <K (25)

One can then rewrite Eq. (25) as follows:

(I460)olkt1l 4 #1) -9yl 0<k<K (26)

8

Now , if one defines w K411 = k4 1] 4 pld] the C-N method call be recast as

3! . .
(é + '7;“{)1’0[“ s pld 0<k<K (27)
AU RPN ISR VNI 0<k<K (29)

Again, let us consider, for the purpose of siinple illustration, the case of constant boundary
conditions, Then, the best serial algorithm can be swunmarized in the following three steps:

o Transform the vector of nitial conditions, i.e.,
pl0 = Pyl
This can be accomplished at a cost of O(N?log, N), using fast transforms.

o Calculate the veetor ¥ by.solving the linear system Eq. (27), and 98 using Eq. (28);

repeat this for all time steps, k= 1.2, IV;the system of O(N?)linear equations
(27) has a synunetric tridiagonal Toeplitz structure: henee, it can be solved in O(N?)
steps;

0 At cach time step one neceds to output 'the veetor v[”, which is obtained by applying

the inverse transformation to vlfl:

ol el 1 <k< K

This can be accomplished in O(N2logy N) at cach time step k| by using fast traunsforins.

Thus, the overall computational complexity of the best serial algorithm cm a single pro-
cessor is Q(K N?logz N).

4. The Heat Equation

In order to provide a concrete framework for assessing the potential of our proposed ap-
proach to time parallelism, we focus our attention on a two-dimensional heat conduction
problem modeled by a lincar parabolic PDE[1 7]. This problem has the advantage of
exhibiting both suflicient computational complexity, and possessing analytical solutions.
Furthermore, it has been widely used for benchinarking of parallel algorithms[4-8,1 8-20].

‘To fix theideas, consider the case of transient conduction in a long bar having a square
cross section, of thickness I, The bar is assumed to be infinite in the 2 direction, so that
the heat profile will wary only in the 2 and y directions. For simplicity, we furthermore
assume that the cross sectional temperature, v(t, x,y) is given at time t= O by

v(t, x,y) = sin(a/L) . sin(y/L) (29)

9

where 0 <z <L, 0 <y<L. The temperature of the bar at the boundaries is kept
constant, i.e. ,

v(t,z,0) = v(l,2, L) = v(#,0,y) = v(t,L,y) = 0 (30)

Thus, the diffar ential equation to be solved is:

2., 52
9 W2, 2y (31

where the constant a is the thermal diffusivity. The initial temperature distribution is
a product of two functiona, cach of which involves only one of the independent space
variables. Hence, using separation of variables[l 7], the temperature distributionin a cross
scetion of the bar can be found to be:

o(t,2,y) = ¢~/ et g (ra/L) sin(ny/L) (32)

This analytical expression will be used to validate the numerical results of the implemen-
tation of our tiine parallel algorithm on the Intel Touchstone Delta supercomputer.

5. 1 mplementation Results

111 order to evaluate the p otential 0fouri)101)osu] timne parallelism paradigm,a FORTRAN
computer code for solving the 2-D heat equation [i .c., Egs. (29-31)] was written and
nnplemented on the Intel Touchstone Delta. The numeric nodes of the Delta are 1860
microprocessors operating at 40 MHz. These nodes arce rated at 80(peak) single precision
MFEFLOPS.

For the actual sim ulations, we sclected the Crank-Nicholson schene, i.e. we set 3= 0.5,
and assumned a thermal difusivity of O. 1. The bar thickness, I, was partitioned, in cach
spatial direction, into N 4 1 segments using N -+ 2 equidistant grid poiuts. Since the
boundary points have a fixed value in this problem, there arc only N? lattice points at
which a computation is performed. The spatial grid size and the time step size were chosen
as h=-A, =A,= 0.1 and A;= 10" respectively.

It order to enable amore accurate measurement of the computation time at each processor,
and to allow for potential inaccuracies stermnming from the numerical scheme to accumulate,
we report results after ' = 5000 timne steps, i.c., 0.5 second after experiment start up.
This number of time steps was divided between the Ny, processors in the following manner.
Tile p!" processor caleulates the' B'* time step, where k= p4m x N, 0 < m < K/N,,
and b < IV,

10

On the Delta machine, processors are allocated interms of a rectangular mesh. In our
unplementation, a square partition was generally used, in which the number of columns
and rows was simultancously varied from 1to 10. For the case of 120 processors,a 10 x 12
rectangular mesh was employed. Each node program starts by determining its node ID
and the number of processors in the partition. Following the identification procedure, the
first node (node ()) reads, from the screen, the lattice size, N, of the problem to be solved,
and broadcasts it to all other nodes. At ecach node, an identical filename is constructed,
“based upon the lattice size, N, and the number of nodes, N,,. Then a file with this
specific filename is opened, which is shared between all nodes, and used for recording the
initialization and computation time of cach node. On the Delta machine, four different
modcs are available for accessing a file. We have used the third mode, which requires a
fixed rccord size. Fach node has its own file pointer and all READ and WRITE operations
arc ordered by node number. Here, setting the mode and closing the file are synchronous
operations. ‘1'bus, we start thning immediately after setting the mode.

To proceed, the values of the paramncters a, 3, Ay, h and K are initialized, the initial
temperature distribution] and its transformation arc calculated, and the values of I);’ and
B¢, where Be =])év" (1 << Nand O <p< N, -- 1) arc computed. At this stage
we clock the time again and subtract it from the starting time to obtain the initialization-
time. This time is a constant across all nodes, function of the spatial resolution, N. It is
mcasured to be on the average 12, 48, 190, 756 milliscconds per node, for N equal to 15,
3.1, 63, 127 respectively.

Following initialization, a DO loop is executed, 011 cach processor. Each loop index runs
from p to I, inincrements of N,. First, cach processor p calculates the temperature
distribution of the p* time step using Eq. (22) and the D values currently in memory.
Then, the value of D at cach node is updated according to the formula

De=Dex By 1<(<N?

yvielding the quantities required for computing the temperature at the (p 4+ N) time
step. After processing O(JX/N,,) time steps, the measured times for initialization and
computation are written from cach node onto the common file.

‘[able 1 showsthe total (i.e., initialization plus computation) time, in milliscconds, for
four diflerent cases involving different lattice grid sizes. The first row of this table displays
the time achieved with the best serial algorithin (see Section 3) using a single node of the
Delta machine. The other mws present the average time per node, calculated according to

p= N1
Y

1
Tave = ~f; 2 T
ave]\rp . P

l::'()

where 7, 1s the total time posted for processor p. The speedup (1. ¢., best serial algorithm
processing time divided by 7,4,) achicved as a function of the number of nodes is displayed
m Fig. 1.

11

As can be seen from Fig. 1, even for a small grid size of N = 15, the time-parallel al-
gorithi achieves about two orders of magnitude speedup by using 120 processors. Note
that, for simall NV, therce is only a limited spatial parallelism in the computation. This
is consistent with reported results of the space- parallel solution of this model problem in
[18]. Interestingly, for larger A’ (c.g., N = 127,) the time-parallel algorithm achieves a
superlinear speedup, i.e., aspeed up greater than thenummber of processors. To under-
stand this behavior, it is important to recall the fact that the time- parallel algorithm
also exploits a sccond level of concurrency, by taking advantage Of the vector processing
capability of the nodes of the Delta. Although both algorithms have been implemented
i a straightforward fashion, i.e., by using the automatic veetorization capabilities of the
Intel Delta, for large N the basic operations of the time- parallel algorithin become more
suitable for vecctor processing, and thus are executed faster by the 860 nodes. In fact, for
large N, the time-parallel algorithimn is computed faster on a single 1860 processor than the
best serial algorithim, even though it requires a greater number of operations.

A comparison 0f our results with both theoretical and practical results reported in [4-
8,18-20] for the same model problem clearly highlights the efficiency of our time-parallel
computing approach. Our results also demonstrate that, even with a limited number of
processors, it is more efficient to exploit parallelisin in time than in space.

5. Conclusions

In this paper, we have presented a novel time parallel algorithin for the solution of linecar
parabolic partial differential equations. The 1asicidea is to usc a transformation involving
t he cigenvalue-ei genvector decomposition of t he coefficient matrices induced by the dis-
cretization process. The resulting diagonalization yields a decoupling of the time stepping
scheme, which in turn allows thie solution for all the time steps to be computed in parallel.

At first glance, it might have scemed that time-parallel algorithms could be more
cfficiently applied to those problems for which the analytical expressions of cigenpairs of
the cocflicient matrices are known, and hence no computation is needed. However, our
preliminary analysis of the performance of time-parallel algorithms for the solution of the
Schrodinger equation, for which additional computations are required for derivation of such
cigenpairs, appears to clearly indicate the contrary[2). The result sccains rather general and
shows that, for most cases, th ¢ p erformar wce of the tim e- parallel algorithms we pr opose,
will not be reduced due to the need of computing the cigenpairs, if the latter is performed
cfficiently.

Acknowledgments The rescarch deseriled in this paper was performed at the Center
for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of
Technology. It was jointly sponsored by Innovative Science and Technology Office of the
Ballistic Missile Defense Organization, and by the National Acronautics and Space Admin-
istration, Office of Advanced Concepts and Techuology. The support and encouragemnent
of Dr. Paul Messina, Direct or of the Concurrent Supercomputing Consortium, is greatly
appreciated.

References

"o

10.
11.

13.

14.

Whithman G.B., Linear and Nonlinear Waves, John Wiley and Sons, New York,
(1974).

Fijany, A., J. Barhen and N. Toomarian, “Fast Time and Space Parallel Solution of
the Schrodinger Equation”, submitted to SIAM J. Scient. Comp., February 1994.

Lelarasmee E., A. Ruheli, and A. 1,. Sangiovanni-V incentelli, “Tile Waveform Re-
laxation Mecthod for the Time Domain Analysis of Large Scale Integrated Circuits”,
IKEE Trans. Computer-Aided Design, Vol. 1, pp. 131-145, 1982.

Saltz J. H.and V. K. Nail, “Towards Developing Robust Algorithms for Solving Partial
Differential Equations on MIMD Machines”, Parallel Computing, Vol. 6, pp. 19-44,
1988. '

Womnble 1). E.; “A Time-Stepping Algorithm for Parallel Computers”, STAM J. Sc.
Stat. Comput. , Vol.11,No. (5), pp. 824-837, IWO.

Hackbusch W., “Parabolic Multigrid Mcthods”, Procs. 6th Int. Symp. on Computing
Methods in Applied Sciences and Engineering, December 1983.

Horton G. and R. Knirsch, “A Tine-Parallel Multigrid-Extrapolation Method for
Parabolic Partial Differential Equat ions”, Parallel Computing, Vol. 18, pp. 21-29,
1992.

Strang G. and G. J. Fix, An Analysis of the Finite Element wethod, Prentice-1Tall,
Englewood Cliffs, NJ, 1973.

. Fijany A., “Time Parallel Algorithms fen’ Solution of Linear Parabolic PDEs” | Procs.,

1993 International Conference on Parallel Processing, Vol. 3, pp. 51-55, August 1993.
Barnett S., Matrices: Methods and Applications, Clarendon Press, 1990.

Hockney R. and C. Jesshope, Parallel Computers. Adam Hilger Ltd., 1981.

. KoggeP.M.and 11. S. Stone,“.4 Parallel Algorithin for the Efficient Solution of a Gen-

cral Class of Recurrence Equations™, IKEE Trans. Comp., Vol. C-22(8), pp. 786-793,
1973.

Knuth, D .E.Th ¢ A rt of Cor nputer Programing, Vol. 1: Fundamental A lgorithms
Addison-Wesley, Reading, MA, 1968,

Varga R. S., Matriz Iterative Analysis, Prentice-Hall, NJ, 1962.

13

16.

17.

18.

19.

. Buzbee B., G. Golub, and C. Niclson, “On Direct Methods for Solving Poisson Equa-

tions", SIAM J. Numer. Anal., Vol. ‘7, PP- 627-656, 1970.

Swarztrauber P. N.and R. A. Sweet, “Efficient Subroutines for the Solution of General
Elliptic and Parabolic Partial Differential Equations”, A tmospheric Technology, pp.
79-81, September 1973,

Chapman, A . J., HeatTransfer, Macmillan, New york, 1967.

Gallopoulos E. and Y. Saad, “On the Parallel Solution of Parabolic Equations”, Proc.
ACM Int. Conf. on Supercomputing, pp. 17-28, June 1989.

Rodriguez G. and D. Wolit zer, “Preconditioned Time-Differencing for the Parallel So-
lution of the Heat Equation™, Proc. 4 t h SIAM Conf. on Parallel Processing, pp.
268-272,1990.

. Vandewalle S. and R. Piessens, “Efficient Parallel Algorithms for Solving Initial-

Boundary Valuc and Tine-Periodic Parabolic Differential Equations”, SIAM J. Sci.
Stat. Comput. , Vol. 13(6), pp. 1330-1346, November 1992.

14

Figure Caption
Fig. 1: Speedup of the time-parallel algorithin as function of the number
of processors for different mesh size.

Table 1. Total exccution time, in milliscconds, for different mesh size
and number of])100?ss01s cmployed.

150

120

90

Speedup

60

30

Number of processor

Fig. 1: Specedup of the time-parallel algorithm as function of the
number of processors for different mesh size.

150

.. “""Table 1: Total execution time, in milliseconds, for different mesh sizes and number of
processors employed

Number of Dimension of the Mesh
Processors 15 31 63 127
l 30364 119453 473665 1898395
1 31208 118109 429817 1693977
4 7811 28642 107595 424074
9 3478 12620 47925 188885
16 1962 7119 27040 106576
25 1260 4574 17373 68475
36 879 3191 12123 47784
49 649 2357 8957 35307
64 500 1816 6903 27210
81 389 1447 5500 21680
100 324 1181 4491 17703
— 120 272 992 3774 14877

